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Abstract: The article contains an application of a theory aiming to change the underlying mathematical structure of 
conventional quantum mechanics which is a no-work-around obstacle to create quantum computers. The theory 
modifications, along with geometrically feasible generalization of formal imaginary unit to unit value areas of explicitly 
defined planes in three dimensions, include implementation of idea that commonly used notions “state”, “observable”, 
“measurement” require a clear unambiguous redefinition. New definition helps to establish effective formalism which 
in combination with geometric algebra generalizations brings into reality a kind of physical fields, which are states in 
terms of the suggested theory, spreading through the whole three-dimensional space and full range of scalar values 
of the time parameter. The fields can be modified instantly in all points of space and past and future time values, thus 
eliminating the concepts of cause and effect, and one-directional time.   

  
  

1. Introduction. States, observables, measurements 

Unambiguous definition of states and observables, does not matter are we in “classical” 
or “quantum” frame, should follow the general paradigm [1], [2], [3]: 

- Measurement of observable 𝑂(𝜇) in state1 𝑆(𝜆) is a map: 

(𝑆(𝜆), 𝑂(𝜇)) ⟶  𝑂(𝜈), 

where 𝑂(𝜇) is an element of the set of observables and 𝑆(𝜆) is element of          
another set, set of states, though both sets can be formally equivalent. 

- The result (value) of a measurement of observable 𝑂(𝜇) by the state 𝑆(𝜆) is a map 
sequence 

(𝑆(𝜆), 𝑂(𝜇)) ⟶  𝑂(𝜈) ⟶ 𝑉(𝐵), 

where 𝑉 is a set of (Boolean) algebra subsets identifying possible results of           
measurements. 

Elementary example: A point moving along straight line (Fig.1.1): 

 

Fig.1.1. A state acts on observable in one-dimensional movement 

                                              
1 Correctly saying is “by a state”. State is operator acting on observable. 

http://www.soiguine.com/
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A state is something external relative to observable. It evolves by itself, following its own 
laws, like, for example, gravitational or electromagnetic fields. It exposes itself only 
when interacting with an observable, making measurement of an observable.   

Now, specifically for 𝐺3
+, even subalgebra of geometric algebra 𝐺3 over the three-

dimensional Euclidean space [4], [5].  

Contrary to the classical mechanics, as in the above example, where it does not matter 
are we considering a state or the result measurement of observable by the state, we 
need now to strictly distinguish between the cases. 

Definition 1.1: The set of states 𝑆(𝜆) is set of elements of 𝐺3
+: 

𝑆(𝛼, 𝛽, 𝐼𝑆) ≡ 𝛼 + 𝐼𝑆𝛽 = 𝛼 + 𝛽(𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐵3) = 𝛼 + 𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3, 

𝛽𝑖 = 𝛽𝑏𝑖, 𝑖 = 1,2,3 

If they are unit value elements: 

  𝛼2 + 𝛽2 = 1, 𝑏1
2 + 𝑏2

2 + 𝑏3
2 = 1, 

I will call them g-qubit states. They can be conveniently written in exponential form 

𝑒𝐼𝑆𝜑,  where 𝜑 = 𝑐𝑜𝑠−1 𝛼. 

Remark 1.1: Element of 𝐺3
+ can be not a unit value element, that’s formally not g-qubit. 

It can be normalized, receiving in that way the form of a g-qubit with positive scalar 
factor: 

𝛼 + 𝛽(𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐵3) = √𝛼
2 + 𝛽2(

𝛼

√𝛼2 + 𝛽2
+

𝛽

√𝛼2 + 𝛽2
(𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐵3)) 

When acting in measurements on observables (see below) they will additionally multiply 

the results by 𝛼2 + 𝛽2. The requirement 𝛼2 + 𝛽2 = 1 has nothing to do with the 

probability interpretation in conventional QM, it is just for convenient representation of g-
qubits in exponential form. 

End of Remark 1.1. 

The set {𝐵1, 𝐵2, 𝐵3} is an arbitrary triple of unit value mutually orthogonal bivectors in 
three dimensions satisfying, with not critical assumption of right-hand screw orientation 
𝐵1𝐵2𝐵3 = 1, the multiplication rules (see Fig.1.2): 

𝐵1𝐵2 = − 𝐵3, 𝐵1𝐵3 = 𝐵2, 𝐵2𝐵3 = − 𝐵12 

State parameters 𝜆 here is a quadruple of scalars {𝛼,𝛽1, 𝛽3, 𝛽3}, plus the triple of 

bivectors {𝐵1, 𝐵2, 𝐵3}. If the bivector basis is known, we can write: 𝑆(𝛼, 𝛽, 𝐼𝑆) =
𝑆(𝛼, 𝛽1, 𝛽2, 𝛽3) 

                                              
2 Opposite orientation 𝐵1𝐵2𝐵3 = −1 can be equivalently used 
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Fig.1.2. Basis of bivectors and unit value pseudoscalar 

 

Definition 1.2: The set of observables 𝑂(𝜇) is generally comprised of elements of 𝐺3: 

𝑂(𝛾, 𝑣1, 𝑣2, 𝑣3, 𝛿1, 𝛿2, 𝛿3, 𝑝) = 𝛾 + 𝐼3(𝑣1𝐵1 + 𝑣2𝐵2 + 𝑣3𝐵3) + 𝛿1𝐵1 + 𝛿2𝐵2 + 𝛿3𝐵3 + 𝐼3𝑝   

All parameters 𝛾, 𝑣1, 𝑣2, 𝑣3, 𝛿1, 𝛿2, 𝛿3, 𝑝 are (real3) scalars. 𝐼3 is pseudoscalar, oriented 
unit value volume, that can be formally defined as geometric product of the three 
vectors dual to basis bivectors: 𝐼3 = 𝑒1𝑒2𝑒3, each 𝑒𝑖 is orthogonal to 𝐵𝑖 and is in default 
right-hand screw orientation with 𝐵𝑖. 

Definition 1.3: Measurement of observable 𝑂(𝛾, 𝑣1, 𝑣2, 𝑣3, 𝛿1, 𝛿2, 𝛿3, 𝑝) by a state 

𝑆(𝛼, 𝛽, 𝐼𝑆) is a generalized Hopf fibration:   

𝑂(𝛾, 𝑣1, 𝑣2, 𝑣3, 𝛿1, 𝛿2, 𝛿3, 𝑝)
𝑆(𝛼,𝛽,𝐼𝑆)
⇒     𝑆(𝛼, 𝛽, 𝐼𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑂(𝛾, 𝑣1, 𝑣2, 𝑣3, 𝛿1, 𝛿2, 𝛿3, 𝑝) 𝑆(𝛼, 𝛽, 𝐼𝑆)4 

The plane of the g-qubit state 𝑆(𝛼, 𝛽, 𝐼𝑆) does not generally coincide with the plane of 
bivector part of the observable it is applied to. 

Remark 1.1: Action of measurement separately on the scalar 𝛾 and pseudoscalar 𝐼3𝑝 
parts of observable does not change them. Action on the vector part 𝐼3(𝑣1𝐵1 + 𝑣2𝐵2 +
𝑣3𝐵3) is action on bivector observable 𝑣1𝐵1 + 𝑣2𝐵2 + 𝑣3𝐵3 multiplied by  𝐼3. 

End of Remark 1.1. 

Remark 1.2: Any conventional quantum mechanics two-valued basis state qubit  

(𝑥1+𝑖𝑦1
𝑥2+𝑖𝑦2

), ‖𝑥1 + 𝑖𝑦1‖
2 + ‖𝑥2 + 𝑖𝑦2‖

2 = 1, 

can be lifted to 𝐺3
+ : 

(𝑥1+𝑖𝑦1
𝑥2+𝑖𝑦2

) ⇒ 𝑥1 + 𝑦1𝐵1 + 𝑦2𝐵2 + 𝑥2𝐵3 = 𝑥1 + 𝑦1𝐵1 + (𝑥2 + 𝑦2𝐵1)𝐵3, 
5 

see [1], [2], [3]. Basis bivector triple {𝐵1, 𝐵2, 𝐵3} is defined in the lift up to solid rotation in 

three dimensions. In that sense we can speak about principal fiber bundle 𝐺3
+ → ℂ2  with 

                                              
3 In the suggested theory scalars are real, complex valued scalars make no sense 
4 Bar means order conjugate: 𝛼+ 𝐼𝑆𝛽̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛼− 𝐼𝑆𝛽 
5 Alternatively, though less convenient: 𝑥1 + 𝑥2𝐵3 + (𝑦1−𝑦2𝐵3)𝐵1 or 𝑥1 + 𝑦2𝐵2 + (𝑦1−𝑥2𝐵2)𝐵1 
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the standard fiber as group of rotations which is also effectively identified by elements of 
𝐺3
+ [6]. 

End of Remark 1.2. 

A measurement can be conveniently written in exponential form: 

𝑒−𝐼𝑆𝜑𝑂(𝛾, 𝑣1, 𝑣2, 𝑣3, 𝛿1, 𝛿2, 𝛿3, 𝑝) 𝑒
𝐼𝑆𝜑, 𝜑 = 𝑐𝑜𝑠−1

𝛼

√𝛼2+𝛽2
 

Useful explicit formula of the result of measurement of a 𝐺3
+ observable (no vector and 

pseudoscalar components), particularly demonstrating generalization of classical Hopf 
results [7] usually formulated with quaternions or Pauli matrices, is [1]: 

𝑆(𝛼, 𝛽, 𝐼𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑂(𝛾, 𝛿1, 𝛿2, 𝛿3) 𝑆(𝛼, 𝛽, 𝐼𝑆) = 

𝛾 + (𝛿1[(𝛼
2 + 𝛽1

2) − (𝛽2
2 + 𝛽3

2)] + 2𝛿2(𝛽1𝛽2 − 𝛼𝛽3) + 2𝛿3(𝛼𝛽2 + 𝛽1𝛽3))𝐵1 +

(2𝛿1(𝛼𝛽3 + 𝛽1𝛽2) + 𝛿2[(𝛼
2 + 𝛽2

2) − (𝛽1
2 + 𝛽3

2)] + 2𝛿3(𝛽2𝛽3 − 𝛼𝛽1))𝐵2 + (2𝛿1(𝛽1𝛽3 −

𝛼𝛽2) + 2𝛿2(𝛼𝛽1 + 𝛽2𝛽3) + 𝛿3[(𝛼
2 + 𝛽3

2) − (𝛽1
2 + 𝛽2

2)])𝐵3            (1.1) 

 

2. Clifford translations, Schrodinger equation, “small” 

measurements  

Consider the notion of Clifford translations acting on g-qubit states. Clifford translation 

𝑒𝐼𝐵𝐶𝛾 by scalar value 𝛾 in given plane 𝐵𝐶 acts on a state 𝑒𝐼𝐵𝜑 as:  

𝑒𝐼𝐵𝜑 → 𝑒𝐼𝐵𝐶𝛾𝑒𝐼𝐵𝜑 

Since generally the plane 𝐵𝐶 of Clifford translation and plane 𝐼𝐵 of the state the Clifford 

translation acts on are not parallel the result 𝑒𝐼𝐵𝐶𝛾𝑒𝐼𝐵𝜑 is [8]: 

𝑒𝐼𝐵𝐶𝛾𝑒𝐼𝐵𝜑 = cos 𝛾 cos𝜑  + cos 𝛾 sin𝜑 𝐼𝐵 + sin 𝛾 cos𝜑 𝐼𝐵𝐶 + sin 𝛾 sin𝜑 𝐼𝐵𝐶𝐼𝐵 
6                                                                            

Let’s check if Clifford translation transforms a g-qubit state into g-qubit state.  

Suppose 𝐼𝐵 and 𝐼𝐵𝐶 are expanded in a bivector basis {𝐵1, 𝐵2, 𝐵3}: 

𝐼𝐵 = 𝛼1𝐵1 + 𝛼2𝐵2 + 𝛼3𝐵3,  𝐼𝐵𝐶 = 𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3 

Then: 

𝑒𝐼𝐵𝐶𝛾𝑒𝐼𝐵𝜑 = cos 𝛾 cos𝜑  + cos 𝛾 sin𝜑 (𝛼1𝐵1 + 𝛼2𝐵2 + 𝛼3𝐵3)
+ sin 𝛾 cos𝜑 (𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3) − sin 𝛾 sin𝜑 (𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3)
− sin 𝛾 sin𝜑 [(𝛽2𝛼3 − 𝛽3𝛼2)𝐵1 + (𝛽3𝛼1 − 𝛽1𝛼3)𝐵2 + (𝛽1𝛼2 − 𝛽2𝛼1)𝐵3] = 

                                              
6 In the case 𝐼𝐵𝐶= 𝐼𝐵 we trivially have rotation of 𝑒𝐼𝐵𝜑 by angle 𝛾 in plane 𝐼𝐵 
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cos𝛾 cos𝜑− sin𝛾 sin𝜑 (𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3) +  

(𝛼1cos𝛾 sin𝜑+𝛽1 sin𝛾 cos𝜑− (𝛽2𝛼3 − 𝛽3𝛼2) sin𝛾 sin𝜑)𝐵1 +

(𝛼2cos𝛾 sin𝜑+𝛽2 sin𝛾 cos𝜑− (𝛽3𝛼1 − 𝛽1𝛼3) sin𝛾 sin𝜑)𝐵2 +

(𝛼3cos𝛾 sin𝜑+𝛽3 sin𝛾 cos𝜑− (𝛽1𝛼2 − 𝛽2𝛼1) sin𝛾 sin𝜑)𝐵3     (2.1) 

The square of the scalar part is: 

𝑐𝑜𝑠2𝛾𝑐𝑜𝑠2𝜑 + 𝑠𝑖𝑛2𝛾𝑠𝑖𝑛2𝜑(𝛼 ⋅ 𝛽)2 − 2 sin 𝛾 cos 𝛾 sin𝜑 cos𝜑(𝛼 ⋅ 𝛽), 

where 𝛼 and 𝛽 are vectors with components (𝛼1, 𝛼2, 𝛼3) and (𝛽1, 𝛽2, 𝛽3). 

The sum of squares of bivector components is: 

𝑐𝑜𝑠2𝛾𝑠𝑖𝑛2𝜑 + 𝑠𝑖𝑛2𝛾𝑐𝑜𝑠2𝜑 + 𝑠𝑖𝑛2𝛾𝑠𝑖𝑛2𝜑(𝛼 × 𝛽)2 + 2 sin 𝛾 cos 𝛾 sin𝜑 cos𝜑(𝛼 ⋅ 𝛽) 

Then sum of square of the scalar part and the sum of squares of bivector components 
then reads: 

𝑐𝑜𝑠2𝛾 + 𝑠𝑖𝑛2𝛾𝑐𝑜𝑠2𝜑 + 𝑠𝑖𝑛2𝛾𝑠𝑖𝑛2𝜑𝑠𝑖𝑛2(𝛼, 𝛽) + 𝑠𝑖𝑛2𝛾𝑠𝑖𝑛2𝜑𝑐𝑜𝑠2(𝛼, 𝛽)
= 𝑐𝑜𝑠2𝛾 + 𝑠𝑖𝑛2𝛾𝑐𝑜𝑠2𝜑 + 𝑠𝑖𝑛2𝛾𝑠𝑖𝑛2𝜑 = 1 

Thus, the result of Clifford translation 𝑒𝐼𝐵𝐶𝛾𝑒𝐼𝐵𝜑 is a g-qubit state, its plane is 
normalization of bivector 

(𝛼1cos𝛾 sin𝜑+𝛽1 sin𝛾 cos𝜑− (𝛽2𝛼3 − 𝛽3𝛼2) sin𝛾 sin𝜑)𝐵1 +

(𝛼2cos𝛾 sin𝜑+𝛽2 sin𝛾 cos𝜑− (𝛽3𝛼1 − 𝛽1𝛼3) sin𝛾 sin𝜑)𝐵2 +

(𝛼3cos𝛾 sin𝜑+𝛽3 sin𝛾 cos𝜑− (𝛽1𝛼2 − 𝛽2𝛼1) sin𝛾 sin𝜑)𝐵3,    (2.2) 

and the Clifford translation parameter is: 

cos−1(cos 𝛾 cos𝜑 − sin 𝛾 sin𝜑 (𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3))     (2.3) 

Let a state depends on time: 𝑒𝐼𝐵𝜑 = 𝑒𝐼𝐵(𝑡)𝜑(𝑡), and assume the Clifford translation is 
associated with a Hamiltonian 𝐻(𝑡) = 𝐼3(𝜒1(𝑡)𝐵1 + 𝜒2(𝑡)𝐵2 + 𝜒3(𝑡)𝐵3),

7 and the 

translation is infinitesimal one: 𝑒
−𝐼3

𝐻(𝑡0)

|𝐻(𝑡0)|
|𝐻(𝑡0)|∆𝑡𝑒𝐼𝐵(𝑡0)𝜑(𝑡0).  

Bivector 𝐼3
𝐻(𝑡0)

|𝐻(𝑡0)|
≡ 𝐼𝐻(𝑡0) is, in the suggested theory (see [9]), generalization of 

imaginary unit. Thus, we get: 

𝑒𝐼𝐵(𝑡0+∆𝑡)𝜑(𝑡0+∆𝑡) = 𝑒−𝐼𝐻(𝑡0)|𝐻(𝑡0)|∆𝑡𝑒𝐼𝐵(𝑡0)𝜑(𝑡0) 

and    

                                              
7 The 𝐺3 form of a Hamiltonian is in one-to-one map with its matrix form in the Pauli matrix basis, see [1]  
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lim
∆𝑡→0

∆𝑒𝐼𝐵(𝑡0)𝜑(𝑡0)

∆𝑡
= lim
∆𝑡→0

𝑒𝐼𝐵(𝑡0+∆𝑡)𝜑(𝑡0+∆𝑡) − 𝑒𝐼𝐵(𝑡0)𝜑(𝑡0)

∆𝑡

= lim
∆𝑡→0

(1 − 𝐼𝐻(𝑡0)|𝐻(𝑡0)|∆𝑡)𝑒
𝐼𝐵(𝑡0)𝜑(𝑡0) − 𝑒𝐼𝐵(𝑡0)𝜑(𝑡0)

∆𝑡
= −𝐼𝐻(𝑡0)|𝐻(𝑡0)|𝑒

𝐼𝐵(𝑡0)𝜑(𝑡0) 

that gives Schrodinger equation in terms of geometric algebra for the state 𝑒𝐼𝐵(𝑡)𝜑(𝑡): 

−
𝜕

𝜕𝑡
𝑒𝐼𝐵(𝑡)𝜑(𝑡) = 𝐼𝐻(𝑡)|𝐻(𝑡)|𝑒

𝐼𝐵(𝑡)𝜑(𝑡) 

That means that the Schrodinger equation governs evolution, under the Hamiltonian 

Clifford translations, of states which, in turn, can act on observables. 

Let’s consider special sort of measurements of an observable which, for some minor 
simplicity, has only bivector part, 𝑂(𝛾, 𝛿, 𝐼𝑂) = 𝛿1𝐵1 + 𝛿2𝐵2 + 𝛿3𝐵3 ≡ 𝑂(𝛿1, 𝛿2, 𝛿3).  

The measurements will be called “small” ones8 if the value of 𝛼 in the state 𝑆(𝛼, 𝛽, 𝐼𝑆) =
𝛼 + 𝐼𝑆𝛽 is close to one and value of 𝛽 is close to zero. With these assumptions, formula 
(1.1) reads: 

𝑆(𝛼, 𝛽, 𝐼𝑆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑂(𝛿1, 𝛿2, 𝛿3) 𝑆(𝛼, 𝛽, 𝐼𝑆) ≈ 

(𝛿1𝛼
2 − 2𝛿2𝛼𝛽3 + 2𝛿3𝛼𝛽2)𝐵1 + (2𝛿1𝛼𝛽3 + 𝛿2𝛼

2 − 2𝛿3𝛼𝛽1)𝐵2 + (−2𝛿1𝛼𝛽2 +
2𝛿2𝛼𝛽1 + 𝛿3𝛼

2)𝐵3 = 𝛼
2 𝑂(𝛿1, 𝛿2, 𝛿3) + 2𝛼[(𝛿3𝛽2 − 𝛿2𝛽3)𝐵1 + (𝛿1𝛽3 − 𝛿3𝛽1)𝐵2 +

(𝛿2𝛽1 − 𝛿1𝛽2)𝐵3].         (2.4) 

By denoting the state bivector part as:  

𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3 ≡ 𝑆(𝛽1, 𝛽2, 𝛽3)  

and taking dual vectors:  

𝑜(𝛿1, 𝛿2, 𝛿3) = −𝐼3 𝑂(𝛿1, 𝛿2, 𝛿3) and 𝑠(𝛽1, 𝛽2, 𝛽3) = −𝐼3 𝑆(𝛽1, 𝛽2, 𝛽3)  

we see that the expression in square brackets in (2.4) above is (see Sec.1):  

[(𝛿3𝛽2 − 𝛿2𝛽3)𝐵1 + (𝛿1𝛽3 − 𝛿3𝛽1)𝐵2 + (𝛿2𝛽1 − 𝛿1𝛽2)𝐵3]
= −𝐼3[(𝛿3𝛽2 − 𝛿2𝛽3)𝐼3𝐵1 + (𝛿1𝛽3 − 𝛿3𝛽1)𝐼3𝐵2 + (𝛿2𝛽1 − 𝛿1𝛽2)𝐼3𝐵3]

= 𝐼3(𝑜(𝛿1, 𝛿2, 𝛿3) × 𝑠(𝛽1, 𝛽2, 𝛽3))  = 𝑆(𝛽1, 𝛽2, 𝛽3) ∧ 𝑂(𝛿1, 𝛿2, 𝛿3) 

Finally, we get the result of “small” measurement:  

𝑆(𝛼, 𝛽1, 𝛽2, 𝛽3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑂(𝛿1, 𝛿2, 𝛿3)𝑆(𝛼, 𝛽1, 𝛽2, 𝛽3) ≈ 

                               𝛼2 𝑂(𝛿1, 𝛿2, 𝛿3) + 2𝛼 𝑆(𝛽1, 𝛽2, 𝛽3) ∧ 𝑂(𝛿1, 𝛿2, 𝛿3)                (2.5) 

                                              
8 I will call states also “small” if they make “small” measurements  
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Take a state associated with Hamiltonian 𝑒−𝐼𝐻(𝑡)|𝐻(𝑡)|∆𝑡, where 𝐼𝐻(𝑡) = 𝐼3
𝐻(𝑡)

|𝐻(𝑡)|
 and ∆𝑡 is 

small enough to make “small” measurements, that’s cos(|𝐻(𝑡)|∆𝑡) is close to one. 

Formula (2.5) then gives: 

𝑒𝐼𝐻(𝑡)|𝐻(𝑡)|∆𝑡 𝑂(𝛿1, 𝛿2, 𝛿3)𝑒
−𝐼𝐻(𝑡)|𝐻(𝑡)|∆𝑡

≈ 𝑐𝑜𝑠2(|𝐻(𝑡)|∆𝑡)𝑂(𝛿1, 𝛿2, 𝛿3) + 2cos(|𝐻(𝑡)|∆𝑡)𝐼𝐻(𝑡) ∧ 𝑂(𝛿1, 𝛿2, 𝛿3) 

 

3. Maxwell equation in geometric algebra 

I’ve mentioned in another place that what is called “quantum computer” implemented 
not through mysterious “entanglement” following from formal, physically not feasible 
tensor products but, in the suggested geometric algebra terms, should actually be a 
kind of analog computer. As shown below, states constructed from solutions of the 
Maxwell equations allow to get appropriate instrument for such implementation. 

Let’s show how the system of the electromagnetic Maxwell equations is formulated as 
one equation in geometric algebra terms [10]. 

Take geometric algebra element of the form: 𝐹 = 𝑒 + 𝐼3ℎ. The electromagnetic field 𝐹 is 
created by some given distribution of charges and currents, also written as geometric 

algebra multivector: 𝐽 ≡ 𝜌 − 𝑗. Apply operator  𝜕𝑡 + ∇, where ∇=
𝜕

𝜕𝑥
�̂� +

𝜕

𝜕𝑦
�̂� +

𝜕

𝜕𝑧
�̂� 9 and 

multiplication is the geometrical algebra one, to the 𝐹. The result is: 

(𝜕𝑡 + ∇)𝐹 = ∇ ∙ 𝑒⏟
𝑠𝑐𝑎𝑙𝑎𝑟

+ 𝜕𝑡𝑒 + 𝐼3(∇ ∧ ℎ)⏟          
𝑣𝑒𝑐𝑡𝑜𝑟

+ ∇ ∧ 𝑒 + 𝐼3𝜕𝑡ℎ⏟        
𝑏𝑖𝑣𝑒𝑐𝑡𝑜𝑟

+ 𝐼3(∇ ⋅ ℎ)⏟    
𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑐𝑎𝑙𝑎𝑟

 

Comparing component-wise (𝜕𝑡 + ∇)𝐹 and 𝐽 we get: 

{

𝛻 ∙ 𝑒 ≡ 𝑑𝑖𝑣𝑒 =  𝜌

𝜕𝑡𝑒 + 𝐼3(𝛻 ∧ ℎ) ≡ 𝜕𝑡𝑒 − 𝑟𝑜𝑡ℎ = −𝑗
𝛻 ∧ 𝑒 + 𝐼3𝜕𝑡ℎ ≡ 𝐼3𝑟𝑜𝑡𝑒 + 𝐼3𝜕𝑡ℎ = 0

𝐼3(𝛻 ⋅ ℎ) ≡ 𝐼3(𝑑𝑖𝑣ℎ) = 0

 

Thus, we have usual system of Maxwell equations: 

{

𝑑𝑖𝑣𝑒 =  𝜌
𝜕𝑡𝑒 − 𝑟𝑜𝑡ℎ = −𝑗
𝜕𝑡ℎ + 𝑟𝑜𝑡𝑒 = 0
𝑑𝑖𝑣ℎ = 0

 

equivalent to one equation (𝜕𝑡 + ∇)𝐹 =  𝐽. 

Without charges and currents the equation becomes:  

                                              
9 For any vector we write   �̂� = 𝑎 |𝑎|⁄  
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                                           (𝜕𝑡 + ∇)𝐹 = 0                                                (3.1) 

The circular polarized electromagnetic waves are the only type of waves following from 
the solution of Maxwell equations in free space done in geometric algebra terms. 

Indeed, let’s take the electromagnetic field in the form:  

                                         𝐹 = 𝐹0𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘 ∙ 𝑟)]                           (3.2) 

requiring that it satisfies (3.1) 

Element 𝐹0 in (3.2) is a constant element of geometric algebra 𝐺3 and 𝐼𝑆 is unit value 
bivector of a plane 𝑆 in three dimensions, generalization of the imaginary unit [9], [1]. 

The exponent in (3.2) is unit value element of 𝐺3
+ [1]: 

𝑒𝐼𝑆𝜑 = cos𝜑 + 𝐼𝑆 sin𝜑,          𝜑 = 𝜔𝑡 − 𝑘 ∙ 𝑟 

Solution of (3.1) should be sum of a vector (electric field 𝑒) and bivector (magnetic field 
𝐼3ℎ): 

𝐹 = 𝑒 + 𝐼3ℎ 

with some initial conditions: 

𝑒 + 𝐼3ℎ|𝑡=0,𝑟=0 = 𝐹0 = 𝑒|𝑡=0,𝑟=0 + 𝐼3ℎ|𝑡=0,𝑟=0 = 𝑒0 + 𝐼3ℎ0 

Substitution of (3.2) into the Maxwell’s (3.1) will show us what the solution looks like. 

The derivative by time gives  

𝜕

𝜕𝑡
𝐹 = 𝐹0𝑒

𝐼𝑆𝜑𝐼𝑆
𝜕

𝜕𝑡
(𝜔𝑡 − 𝑘 ∙ 𝑟) = 𝐹0𝑒

𝐼𝑆𝜑𝐼𝑆𝜔 = 𝐹𝐼𝑆𝜔 

The geometric algebra product F  is: 

∇𝐹 = 𝐹0𝐼𝑆𝑒
𝐼𝑆𝜑∇(𝜔𝑡 − 𝑘 ∙ 𝑟) = −𝐹0𝑒

𝐼𝑆𝜑𝐼𝑆𝑘 = −𝐹𝐼𝑆𝑘 

or 

∇𝐹 = 𝐹0𝑒
𝐼𝑆𝜑∇(𝜔𝑡 − 𝑘 ∙ 𝑟)𝐼𝑆 = −𝐹0𝑒

𝐼𝑆𝜑𝑘𝐼𝑆 = −𝐹𝑘𝐼𝑆, 

depending on do we write 𝐼𝑆(𝜔𝑡 − 𝑘 ∙ 𝑟) or (𝜔𝑡 − 𝑘 ∙ 𝑟)𝐼𝑆. The result should be the same 
because 𝜔𝑡 − 𝑘 ∙ 𝑟 is a scalar.  

Commutativity 𝐼𝑆𝑘 = 𝑘𝐼𝑆 is valid only if 𝑘 × 𝐼3𝐼𝑆 = 0. The following agreement takes 
place between orientation of 𝐼3, orientation of  𝐼𝑆 and direction of vector 𝑘  [1].  

The vector 𝐼3𝐼𝑆 = 𝐼𝑆𝐼3 is orthogonal to the plane of  𝐼𝑆 and its direction is defined by 
orientations of 𝐼3 and 𝐼𝑆. Rotation of right/left hand screw defined by orientation of  𝐼𝑆 
gives movement of right/left hand screw. This is the direction of the vector  𝐼3𝐼𝑆 = 𝐼𝑆𝐼3. 

That means that the matching between �̂� and 𝐼𝑆  should be �̂� = ±𝐼3𝐼𝑆⟹ �̂�𝐼𝑆 = ∓𝐼3. 

Assume first that orientation is   𝐼3 = �̂�𝐼𝑆. Then Maxwell equation becomes: 

𝐹(𝐼𝑆𝜔 − 𝐼3|𝑘|) = 𝐹(𝜔𝐼𝑆 − |𝑘|�̂�𝐼𝑆) = 0 
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or                           (𝑒 + 𝐼3ℎ)𝜔 = (𝑒 + 𝐼3ℎ)𝑘 

Left hand side of equation is sum of vector and bivector, while right hand side is scalar 
𝑒 ∙ 𝑘 plus bivector 𝑒 ∧ 𝑘 , plus pseudoscalar 𝐼3(ℎ ∙ 𝑘), plus vector 𝐼3(ℎ ∧ 𝑘). It follows that 
both 𝑒 and ℎ lie on the plane of 𝐼𝑆 and then: 

𝜔𝑒 = 𝐼3ℎ𝑘, 𝜔𝐼3ℎ = 𝑒𝑘  →
𝜔2

|𝑘|2
𝐼3ℎ𝑘 = 𝜔𝑒 

Thus, 𝜔 = |𝑘| and we get equation 𝐼3ℎ�̂� = 𝑒 from which particularly follows |𝑒|2=|ℎ|2 and 

�̂��̂�ℎ̂ = 𝐼3. The result for this case is that the solution of (4.1) is  

𝐹 = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘 ∙ 𝑟)] 

where 𝑒0 and ℎ0 are arbitrary mutually orthogonal vectors of equal length, lying on the 

plane 𝑆. Vector 𝑘 should be normal to that plane, �̂� = −𝐼3𝐼𝑆 and  |𝑘| = 𝜔. 

In the above result the sense of the 𝐼𝑆  orientation and the direction of 𝑘 were assumed 

to agree with 𝐼3 = �̂�𝐼𝑆.  

Opposite orientation, −𝐼3 = �̂�𝐼𝑆, that’s 𝑘 and 𝐼𝑆 compose left hand screw and �̂� = 𝐼3𝐼𝑆, 

will give solution of the same form 𝐹 = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘 ∙ 𝑟)] but 𝐼3 = �̂�ℎ̂�̂�. 

Summary: 

For a plane 𝑆 in three dimensions Maxwell equation (3.1) has two solutions 

• 𝐹+ = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘+ ∙ 𝑟)] , with �̂�+ = 𝐼3𝐼𝑆, �̂�ℎ̂�̂�+ = 𝐼3, and the triple {�̂�, ℎ̂, �̂�+} 

is right hand screw oriented, that’s rotation of �̂� to ℎ̂ by 𝜋 2⁄  gives movement of right 

hand screw in the direction of  𝑘+ = |𝑘|𝐼3𝐼𝑆. 

• 𝐹− = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘− ∙ 𝑟)], with �̂�− = −𝐼3𝐼𝑆, �̂�ℎ̂�̂�− = −𝐼3, and the triple 

{�̂�, ℎ̂, �̂�−} is left hand screw oriented, that’s rotation of �̂� to ℎ̂ by 𝜋 2⁄  gives movement 

of left hand screw in the direction of  𝑘− = −|𝑘|𝐼3𝐼𝑆 or, equivalently, movement of 
right hand screw in the opposite direction, −𝑘−. 

• 𝑒0 and ℎ0, initial values of 𝑒 and ℎ, are arbitrary mutually orthogonal vectors of equal 

length, lying on the plane 𝑆. Vectors 𝑘± = ±|𝑘±|𝐼3𝐼𝑆 are normal to that plane. The 

length of the “wave vectors” |𝑘±| is equal to “angular frequency”  . 

 

Maxwell equation (3.1) is a linear one. Then any linear combination of 𝐹+ and 𝐹− saving 
the structure of (3.2) will also be a solution.  

Let’s write: 

{
𝐹+ = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 − (𝐼3𝐼𝑆) ∙ 𝑟)] = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔𝑡]𝑒𝑥𝑝[−𝐼𝑆[(𝐼3𝐼𝑆) ∙ 𝑟]]

𝐹− = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 + (𝐼3𝐼𝑆) ∙ 𝑟)] = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔𝑡]𝑒𝑥𝑝[𝐼𝑆[(𝐼3𝐼𝑆) ∙ 𝑟]]
     (3.3) 

Then for arbitrary scalars 𝜆 and 𝜇: 

𝜆𝐹+ + 𝜇𝐹− = (𝑒0 + 𝐼3ℎ0)𝑒
𝐼𝑆𝜔𝑡(𝜆𝑒−𝐼𝑆[(𝐼3𝐼𝑆)∙𝑟] + 𝜇𝑒𝐼𝑆[(𝐼3𝐼𝑆)∙𝑟])           (3.4) 
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is solution of (3.1). The item in the second parenthesis is weighted linear combination of 
two states with the same phase in the same plane but opposite sense of orientation. 
The states are strictly coupled because bivector plane should be the same for both, 
does not matter what happens with that plane. 

Formula (3.4) does not immediately looks like an element of 𝐺3
+ due to the factor 

(𝑒0 + 𝐼3ℎ0). But necessary transformations (see [10]) of the initial bivector basis 

{𝐵1, 𝐵2, 𝐵3} into triple of unit value orthonormal bivectors {𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0} where 𝐼𝑆 is bivector, 

dual to the propagation direction vector; 𝐼𝐵0 is dual to initial vector of magnetic field; 𝐼𝐸0 

is dual to initial vector of electric field, change (3.4) with 𝜆 = 𝜇 = 1 into: 

𝜆𝑒𝐼𝑃𝑙𝑎𝑛𝑒
+ 𝜑+ + 𝜇𝑒𝐼𝑃𝑙𝑎𝑛𝑒

− 𝜑−|
λ=μ=1

 (3.5) 

where  

𝜑± = cos−1(cos𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])), 

𝐼𝑃𝑙𝑎𝑛𝑒
± = 𝐼𝑆𝑠𝑖𝑛𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])+𝐼𝐵0𝑐𝑜𝑠𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟]) + 𝐼𝐸0𝑠𝑖𝑛𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟]) 

 

4. Clifford translations of states (3.5) 

Linear combination of the two equally weighted basic solutions of the Maxwell equation 

𝜆𝐹+ + 𝜇𝐹− with 𝜆 = 𝜇 = 1, can be written for exponential form purposes as [10]: 

2√2cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (
1

√2
cos𝜔𝑡 +

1

√2
√1 + 𝑠𝑖𝑛2𝜔𝑡 (

sin𝜔𝑡

√1+𝑠𝑖𝑛2𝜔𝑡
𝐼𝑆 +

cos𝜔𝑡

√1+𝑠𝑖𝑛2𝜔𝑡
𝐼𝐵0 +

sin𝜔𝑡

√1+𝑠𝑖𝑛2𝜔𝑡
𝐼𝐸0))          (4.1) 

I will call such 𝐺3
+ states spreons because they are defined, spread, over the whole 

three-dimensional space for all values of time, and instantly change under Clifford 
translations over the whole three-dimensional space for all values of time, along with the 
results of measurement of any observable.  

Arbitrary Clifford translation written in the {𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0} basis: 𝑒𝐼𝐵𝐶𝛾 = cos 𝛾 +

sin 𝛾(𝛾1𝐼𝑆 + 𝛾2𝐼𝐵0 + 𝛾3𝐼𝐸0) when acting on spreons (4.1) also written in exponential form 

2√2cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] 𝑒
𝐼𝑠𝑝𝜑, where 𝐼𝑠𝑝 = 𝐼𝑆

sin𝜔𝑡

√1+𝑠𝑖𝑛2𝜔𝑡
+ 𝐼𝐵0

cos𝜔𝑡

√1+𝑠𝑖𝑛2𝜔𝑡
+ 𝐼𝐸0

sin𝜔𝑡

√1+𝑠𝑖𝑛2𝜔𝑡
  and 𝜑 =

cos−1 (
1

√2
cos𝜔𝑡), reads:               

𝑒𝐼𝐵𝐶𝛾2√2cos 𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] 𝑒
𝐼𝑠𝑝𝜑 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (cos 𝛾 cos𝜔𝑡+cos 𝛾√1 + 𝑠𝑖𝑛

2𝜔𝑡 𝐼𝑠𝑝 +

sin 𝛾 cos𝜔𝑡 𝐼𝐵𝐶 + sin 𝛾 √1 + 𝑠𝑖𝑛
2𝜔𝑡𝐼𝐵𝐶𝐼𝑠𝑝) = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (cos 𝛾 cos𝜔𝑡+cos 𝛾 sin𝜔𝑡 𝐼𝑆 +

cos 𝛾 cos𝜔𝑡 𝐼𝐵0 +cos 𝛾 sin𝜔𝑡 𝐼𝐸0 + sin 𝛾 cos𝜔𝑡 𝐼𝐵𝐶 + sin 𝛾 𝐼𝐵𝐶(sin𝜔𝑡 𝐼𝑆 + cos𝜔𝑡 𝐼𝐵0 +

sin𝜔𝑡 𝐼𝐸0)) = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (cos 𝛾 𝑒
𝐼𝑆𝜔𝑡 + cos 𝛾 𝐼𝐵𝐶𝑒

𝐼𝑆𝜔𝑡 + sin 𝛾 𝐼𝐵𝐶(𝑒
𝐼𝑆𝜔𝑡 +

𝐼𝐵0𝑒
𝐼𝑆𝜔𝑡)) = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]𝑒

𝐼𝐵𝐶𝛾 (𝑒𝐼𝑆𝜔𝑡 + 𝐼𝐵0𝑒
𝐼𝑆𝜔𝑡)                                (4.2) 
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This result is explicitly defined for all values of 𝑡 and 𝑟, that’s instantly spreads through 

the whole three-dimensions and for all values of time, future and past. 

Measurement of any, for example  𝐺3
+ observable 𝐶0 + 𝐶1𝐼𝑆 + 𝐶2𝐼𝐵0 + 𝐶3𝐼𝐸0 , by the state 

(4.2) gives a  𝐺3
+ element 𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟) also spread through 

the whole three-dimensional space for all values of the time parameter 𝑡.  

Let’s first rewrite 𝑒𝐼𝑆𝜔𝑡 + 𝐼𝐵0𝑒
𝐼𝑆𝜔𝑡 as single g-qubit:  

𝑒𝐼𝑆𝜔𝑡 + 𝐼𝐵0𝑒
𝐼𝑆𝜔𝑡 = 𝑐𝑜𝑠 𝜔𝑡 + 𝐼𝑆 𝑠𝑖𝑛𝜔𝑡 + 𝐼𝐵0 𝑐𝑜𝑠 𝜔𝑡 + 𝐼𝐸0 𝑠𝑖𝑛 𝜔𝑡 ≡ 𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡) 

Take only bivector part of the observable 𝑂(𝐶1, 𝐶2, 𝐶3) ≡ 𝐶1𝐼𝑆 + 𝐶2𝐼𝐵0 + 𝐶3𝐼𝐸0 (scalar part 

does not change in measurements.) Without applying Clifford translation measurement 

by state 𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡) gives (see (1.1)): 

𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑂(𝐶1, 𝐶2, 𝐶3)𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡)

= 2𝐶3𝐼𝑆 + 2(𝐶1 sin 2𝜔𝑡 +𝐶2 cos 2𝜔𝑡)𝐼𝐵0 + 2(−𝐶1 cos 2𝜔𝑡 + 𝐶2 sin 2𝜔𝑡)𝐼𝐸0 

Including the position dependent factor into the measurement we have: 

8𝑐𝑜𝑠2(𝜔[(𝐼3𝐼𝑆) ⋅ 𝑟])(𝐶3𝐼𝑆 + (𝐶1 𝑠𝑖𝑛 2𝜔𝑡 +𝐶2 𝑐𝑜𝑠 2𝜔𝑡)𝐼𝐵0 + (−𝐶1 𝑐𝑜𝑠 2𝜔𝑡 + 𝐶2 𝑠𝑖𝑛 2𝜔𝑡)𝐼𝐸0) 

With the Clifford translation 𝑒𝐼𝐵𝐶𝛾𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡) we get:  

𝑒𝐼𝐵𝐶𝛾𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡) = 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾1 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 − 𝛾2 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 −

𝛾3 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 + (𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜔𝑡 +𝛾1 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾2 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 + 𝛾3 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡)𝐼𝑆 +

(𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜔𝑡 + 𝛾1 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜔𝑡 + 𝛾2 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾3 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜔𝑡)𝐼𝐵0 +

(𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛𝜔𝑡 −𝛾1 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 + 𝛾2 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 + 𝛾3 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡)𝐼𝐸0. 

To make the results more readable use the “small” state approximation. Then from (2.5) 

we get: 

4𝑐𝑜𝑠2(𝜔[(𝐼3𝐼𝑆) ⋅ 𝑟])𝑒
𝐼𝐵𝐶𝛾𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑂(𝐶1, 𝐶2, 𝐶3)𝑒

𝐼𝐵𝐶𝛾𝑆𝑃(𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝜔, 𝑡) =

4𝑐𝑜𝑠2(𝜔[(𝐼3𝐼𝑆) ⋅ 𝑟]) {(𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾1 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 − 𝛾2 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 −

𝛾3 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡)
2(𝐶1𝐼𝑆 + 𝐶2𝐼𝐵0 + 𝐶3𝐼𝐸0) + 2(𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾1 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜔𝑡 −

𝛾2 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾3 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡) [((𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝜔𝑡 +𝛾1 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾2 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 +

𝛾3 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡)𝐼𝑆 + (𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝜔𝑡 + 𝛾1 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 + 𝛾2 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 − 𝛾3 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝜔𝑡)𝐼𝐵0 +

(𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛𝜔𝑡 −𝛾1 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡 + 𝛾2 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛𝜔𝑡 + 𝛾3 𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝜔𝑡)𝐼𝐸0) ∧ 𝑂(𝐶1, 𝐶2, 𝐶3)]}. 

We see that with or without Clifford translation the result of measurement is instantly 

defined through the whole three-dimensions and for all values of time, future and past. 
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5. Conclusions 

The seminal ideas: variable and explicitly defined complex plane in three dimensions, 

the +
3G  states as operators acting on observables, solution of the Maxwell equation(s) in 

the 𝐺3 frame giving 𝐺3
+ states, spreons, spreading over the whole three-dimensional 

space for all values of time, along with the results of measurement of any observable, 

allow to put forth comprehensive and much more detailed formalism replacing 

conventional quantum mechanics.  

The spreon states, subjected to Clifford translations, change instantly forward and 

backward in time, modifying the results of measurements both in past and future. Very 

notion of the concept of cause and effect, as ordered by time, disappears. 

In the case of computations, executed through Clifford translations, all measured 

observable values are retuned all together. Any number of test observables can be 

placed into continuum of the (𝑡, 𝑟) dependent values of the spreon state, thus fetching 

out any amount of values. 
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